神经网络的传播(权重更新)

数据在网络中的传播有两种方式。一种是沿着输入到输出的路径被称为前向传播。一种是从输出返回到输入被成为反向传播(backprop)。

当我们运行最小化loss的时候为了求出loss的值我们的数据会沿着我们构建的通道向前流动逐步的求出每个节点。

而反向传播就是为了最小化loss求梯度的过程了。那什么是梯度为什么选择梯度下降法来更新权重首先让我们看下lossf(w)可能的图像

想到了什么或许山脉是跟这图像最相似的实体。那么如何求得使loss值最小的权重w我们先联想一下我们是如何求出一元函数的极小值的。我们可以通过求导得出斜率当斜率为0时则为极小值不是很严谨。

从一元函数进入多元函数导数变成了偏导数发生变化的方向不再只是平面上唯一的x轴而是立体的多轴。而不同方向的变化都有不同的导数称作方向导数。而梯度的定义

我们需要注意的是z函数梯度的方向是z增加最快的方向。我们在深度学习里需要降低loss因此我们是选择loss函数梯度的反方向

其中α代表学习率。权重某个值的更新等于原来的值减去学习率乘以导数的值。梯度下降法的原理就是如此。可以看出来如果靠我们自己去计算那运算量是很大的。

如上图所示loss函数是一个很错综复杂的结构很多尖峰也很多低谷。

CS231N斯坦福公开课这么描述过梯度下降。假设我们把loss对w的函数看成一个山谷。那么我们每次计算导数的操作就是在试探哪里是下降的方向然后不断的往下走一直走到山底得到最好的w。

那么一旦试探到下降的方向后我们该走多远这就是学习率所决定的。

学习率其实是很重要的一个参数。假如太小的话会导致训练时间过长因为你需要很久才能走到山底。假如太大那么你很有可能跳过极小值无法获得较好的模型效果。

三幅图形象的说明了小球如果根据不同的学习率容易遇到的场景。中间的小球陷入了极小值但无法到达最小值。后面会讲到我们如何通过优化器来规避这种问题。

所以很多时候我们都是先预设一个学习率然后根据模型出来的效果如准确率等来调整。

更详细的内容因为篇幅问题会分别讲解。如损失函数的选择优化器虽然都是梯度下降但是方式不同的选择学习率权重的初始化。

算法原理的介绍,有一篇文章写的很好,在这里记录下,并且加入自己的理解。反向

的基础了,但是很多人在学的时候总是会遇到一些问题,或者看到大篇的公式觉得好像很难就退缩了,其实不难,就是一个链式求导法则反复用。如果不想…

算法: 1.针对特殊的一种激活函数:sigmoid(x)=11+exsigmoid(x)=11+exsigmoid(x)=\frac{1}{1+e^{-x}}来推导BP

公式: 给定训练集:D={(x1,y1),(x2,y2)…,(xm,ym)},xiRd,yiRlD={(x1,y1),(x2,y2)…,(xm…

经过各种运算,其输出不是简单的线性函数,而是复杂的超越方程,对于这种函数,目前没有很好地解法。回顾数学上解超越方程的解法试探法,即每次给出试探性的解,带入方程中,得出与目标的误差(亦叫损失函数loss),再调整试探解。现在有一种与此类似的解法…

在下一个时间段内不会立刻的转向,而是沿着上一个时间段的运行方向继续运行一段时间。其具体的

的原理和方法softmax前世今生系列(7)

时,以softmax层为何能对文本进行分类、预测等问题为入手点,顺藤摸瓜进行的一系列研究

。其中包含: 1.softmax函数的正推原理,softmax的代数和几何意义,softmax为什么能用作分类预测,softmax链式求导的过程。 2.从数学的角度上研究了

为例。最后的输出是这样的。作者提出了一个问题:如何调整第一个节点和隐藏层第二个节点的之…

Make Your Own Neural Network(十三)—–实际上是如何

作者:lz0499声明:1)Make Your Own Neural Network翻译自Tariq Rashid编写的

入门书籍。作者的目的是尽可能的少用术语和高深的数学知识,以图文并茂的方式讲解

传输到输出层的过程。下面将按照顺序进行解释 核心思路:传递的过程其实就是矩阵的乘法以及计算加权平均后经过激活函数就完成了一次传递,以此类推进行传递 1.数据输入网络 输入层:输入层中输入的是一些矩阵,比如可以输入(1,2)(1,2)(1,2)这个点坐标作为一个数据,也可以输入一张2

Make Your Own Neural Network(十四)—–实际上是如何

作者:lz0499声明:1)Make Your Own Neural Network翻译自Tariq Rashid编写的

入门书籍。作者的目的是尽可能的少用术语和高深的数学知识,以图文并茂的方式讲解

上一次我们讲了M-P模型,它实际上就是对单个神经元的一种建模,还不足以模拟人脑神经系统的功能。由这些人工神经元构建出来的网络,才能够具有

的图像去噪方法摘要:图像去噪在图像处理中仍然是一个具有挑战性的问题。作者提出了一种基于深度卷积

的方法:一个DCNN来实现噪声图像。因此,通过从污染图像中分离噪声图像可以实现潜在清晰图像。在训练阶段,采用梯度裁剪方案来防止梯度爆炸,并使网络能够快速收敛。实验结果表明,与现有技术的去噪方法相比,所提出的去噪方法可以实…

中我们计算出每一层的权值W和偏置b的偏导数之后,最后一步就是对权值和偏置进行

了。 在之前的BP算法的介绍中我们给出了如下公式: 其中的为

并不是一个常数,而是一个以训练次数为自变量的单调递减的函数。使用变化的

一个样本: FP: P:x变量个数 n1:第一层隐藏层个数 n2:第二层隐藏层个数 z[1] = w[1] x + b[1] n1X1=n1XP * PX1 + n1X1 a[1] = g(z[1]) n1X1 z[2] = w[2] a[1] + b[2] n2X1 = n2Xn1 * n1X1 + n2X1 a[2] = g(z[2]) n2X1 L(a[2]…

CSDN开发者助手由CSDN官方开发,集成一键呼出搜索、万能快捷工具、个性化新标签页和官方免广告四大功能。帮助您提升10倍开发效

过程 I1,I2 = 输入 f() = 激活函数(Tanh(), Sigmoid()或者其他) W = 当前神经元的

发展中的问题: 早期的感知机只有一个MP神经元,不能处理非线性问题,甚至连最简单的“异或”问题都不能解决。出现这种显现的问题在于只有一个MP神经元,但是自然界中绝大多数生物都不止一个细胞,当单个MP神经元出现局限的时候,自然会想到在感知机基础上增加更多的神经元,让感知机更加强大。 解决非线性问题的方法:增加MP神经元数量,例如可以再增加一层神经元,如下图:

解决多分类问题时,最常用的一种方式就是在最后一层设置n个输出节点,无论在浅层

还是在CNN中都是如此,比如,在AlexNet中最后的输出层有1000个节点: 一般情况下,最后一个输出层的节点个数与分类任务的目标数相等。假设最后的节点数为N,那么对于每一个样例,

可以得到一个N维的数组作为输出结果,数组中每一个维度会对应一个类别。在最理想的情况下,…

实用干货原创整理,转载请注明出处!本站所有资源均可以免注册下载,扫码支付更方便。
免责声明:因为源码和模板等程序的特殊性,安装或者部署的同时需要一定的技术知识,请自行安装调试,本站不能所有提供的资源都提供安装帮助的,如遇到相关问题请自行解决,本站不提供退款和相应的免费解答服务!
实用干货 » 神经网络的传播(权重更新)